CALOR
El calor es aquello que siente un ser vivo ante una temperatura elevada. La física entiende el calor como la energía que se traspasa de un sistema a otro o de un cuerpo a otro, una transferencia vinculada al movimiento de moléculas, átomos y otras partículas.
En este sentido, el calor puede generarse a partir de una reacción química (como la combustión), una reacción nuclear (como aquellas que se desarrollan dentro del Sol) o una disipación (ya sea mecánica, fricción, o electromagnética, microondas).
Las partículas de los cuerpos no están en reposo sino que se encuentran en constante agitación. Como consecuencia de esta agitación, los cuerpos poseen una determinada energía térmica. La temperatura es un indicador de la energía térmica que tienen los cuerpos. De modo general podemos decir que, a mayor temperatura, mayor energía de este tipo. Pues bien,los cuerpos y los sistemas pueden intercambiar energía térmica. A esta energía térmica intercambiada se le denomina calor. En ocasiones también se denomina calor al propio proceso de transferencia de energía
El calor es la energía intercambiada entre un cuerpo y su entorno por el hecho de encontrarse a distinta temperatura. El calor, como el trabajo, es energía en tránsito, por lo que se puede entender también como un método para transferir energía.
CANTIDAD DE CALOR
Cuando una sustancia se está fundiendo o evaporándose está absorbiendo cierta cantidad de calor llamada calor latente de fusión o calor latente de evaporación, según el caso. El calor latente, cualquiera que sea, se mantiene oculto, pero existe aunque no se manifieste un incremento en la temperatura,ya que mientras dure la fundición o la evaporación de la sustancia no se registrará variación de la misma.
Para entender estos conceptos se debe conocer muy bien la diferencia entre calor y temperatura.
En tanto el calor sensible es aquel que suministrado a una sustancia eleva su temperatura.
La experiencia ha demostrado que la cantidad de calor tomada (o cedida) por un cuerpo es directamente proporcional a su masa y al aumento (o disminución) de temperatura que experimenta.
La expresión matemática de esta relación es la ecuación calorimétrica:
Q = m·Ce·(Tf-Ti)

Nota: La temperatura inicial (Ti) se anota también como T0 o como t0.
Si Ti > Tf el cuerpo cede calor Q < 0
Si Ti < Tf el cuerpo recibe calor Q > 0
Se define calor específico (Ce) como la cantidad de calor que hay que proporcionar a un gramo de sustancia para que eleve su temperatura en un grado centígrado. En el caso particular del agua Ce vale 1 cal/gº C ó 4,186 J.
Siendo T0, T las temperaturas inicial y final respectivamente.
produce sin intercambio de calor con el
exterior
Se dice que un límite es diatérmico cuando permite que el estado del sistema se
modifique sin que haya movimiento del límite. La manera usual de definirlo es
que un límite es diatérmico cuando permite el flujo de calor a través de él.
MEDIDA DEL CALOR
De acuerdo con el principio de conservación de la energía, suponiendo que no existen pérdidas, cuando dos cuerpos a diferentes temperaturas se ponen en contacto, el calor tomado por uno de ellos ha de ser igual en cantidad al calor cedido por el otro. Para todo proceso de transferencia calorífica que se realice entre dos cuerpos puede escribirse entonces la ecuación:
Q1 = - Q2
en donde el signo - indica que en un cuerpo el calor se cede, mientras que en el otro se toma. Recurriendo a la ecuación calorimétrica, la igualdad anterior puede escribirse en la forma:
m1 · c1 · (Te - T1) = -m2 · c2 · (Te - T2)
(6)
donde el subíndice 1 hace referencia al cuerpo frío y el subíndice 2 al caliente. La temperatura Te en el equilibrio será superior a T1 e inferior a T2.CALOR.- Se llama calor a la propagacion o flujo de la energía entre cuerpos que se ponen en contacto, es decir, el calor es la energía en movimiento.
Todos los cuerpos de la naturaleza tienden a un estado final llamado equilibrio termodinámico con el medio que los rodea o con otros cuerpos en contacto, es decir adquieren la misma temperatura.
Capacidad Calorifica (C).- Se define como la cantidad de calor que se debe suministrar o sustraer a un cuerpo o sustancia para elevar o disminuir su temperatura en un grado centigrado, es decir.
La capacidad calorifica es una cantidad física escalar que depende de la composicion y estructura interna del cuerpo o sustancia, lo cual implica que cada cuerpo o sustancia tiene su propia capacidad calorifica.
Calor específico (Ce).- Se define como la cantidad de calor (Q), que se debe suministrar a la masa "m" de un cyuerpo para elevar su temperatura en un grado centigrado.
Cantidad de calor (Q).- Se llama así, a la cantidad de calor que gana o pierde un cuerpo o sustancia al ponerse en contacto con otro cuerpo que se encuentra a diferente temperatura, cuya ecuacion esta dado por:
Proceso Termodinámico
En física, se denomina proceso termodinámico a la evolución de determinadas magnitudes (o propiedades) propiamente termodinámicas relativas a un determinado sistema termodinámico. Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de la interacción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre sí.
De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debido a su desestabilización.
Se define como el campo de la física
que describe y relaciona las propiedades físicas de sistemas macroscópicos de
materia y energía. Los principios de la termodinámica tienen una importancia
fundamental para todas las ramas de la ciencia y la ingeniería.
que describe y relaciona las propiedades físicas de sistemas macroscópicos de
materia y energía. Los principios de la termodinámica tienen una importancia
fundamental para todas las ramas de la ciencia y la ingeniería.
Un concepto esencial de la termodinámica es el de sistema macroscópico, que se define como un conjunto de
materia que se puede aislar espacialmente y que coexiste con un entorno
infinito e imperturbable. El estado de un sistema macroscópico en equilibrio
puede describirse mediante propiedades medibles como la temperatura, la presión
o el volumen, que se conocen como variables termodinámicas. Es posible identificar
y relacionar entre sí muchas otras variables (como la densidad, el calor
específico, la compresibilidad o el coeficiente de expansión térmica), con lo
que se obtiene una descripción más completa de un sistema y de su relación con
el entorno.
materia que se puede aislar espacialmente y que coexiste con un entorno
infinito e imperturbable. El estado de un sistema macroscópico en equilibrio
puede describirse mediante propiedades medibles como la temperatura, la presión
o el volumen, que se conocen como variables termodinámicas. Es posible identificar
y relacionar entre sí muchas otras variables (como la densidad, el calor
específico, la compresibilidad o el coeficiente de expansión térmica), con lo
que se obtiene una descripción más completa de un sistema y de su relación con
el entorno.
PROCESO
ISOTÉRMICO
ISOTÉRMICO
Se denomina proceso isotérmico o proceso isotermo al cambio de temperatura reversible en un sistema termodinámico, siendo dicho cambio de temperatura constante en todo el sistema.
PROCESO ISOBÁRICO
Un proceso isobárico es
un proceso termodinámico que
ocurre a presión constante. En él, el calor transferido a presión constante está relacionado con el resto de variables mediante:
,
Donde:
= Calor transferido.
= Energía Interna.
= Presión.
= Volumen.
Un proceso isobárico es
un proceso termodinámico que
ocurre a presión constante. En él, el calor transferido a presión constante está relacionado con el resto de variables mediante:
,
Donde:
= Calor transferido.
= Energía Interna.
= Presión.
= Volumen.
Un proceso isocórico, también llamado proceso isométrico o
isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; ΔV = 0. Esto implica que el
proceso no realiza trabajo presión-volumen, ya que éste se define
como: Z=PΔV; donde P es la presión (el
trabajo es positivo, ya que es ejercido por el sistema).
isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; ΔV = 0. Esto implica que el
proceso no realiza trabajo presión-volumen, ya que éste se define
como: Z=PΔV; donde P es la presión (el
trabajo es positivo, ya que es ejercido por el sistema).
PROCESO ADIABÁTICO
En termodinámica:
•Dicho de un proceso termodinámico, que seproduce sin intercambio de calor con el
exterior
En Física.
•Que no permite el intercambio de calor
•Que está aislado térmicamente
•Que está totalmente aislado del exterior
•Que está aislado térmicamente
•Que está totalmente aislado del exterior
PROCESO DIATÉRMICO
Se le llama Diatérmico a aquel cuerpo que deja pasar fácilmente calor.
límite diatérmico:Se dice que un límite es diatérmico cuando permite que el estado del sistema se
modifique sin que haya movimiento del límite. La manera usual de definirlo es
que un límite es diatérmico cuando permite el flujo de calor a través de él.

TRANSMICION DE CALOR
La transferencia de calor es el proceso de propagación del calor en distintos medios. La parte de la física que estudia estos procesos se llama a su vez Transferencia de calor o Transmisión de calor. La transferencia de calor se produce siempre que existe un gradiente térmico o cuando dos sistemas con diferentes temperaturas se ponen en contacto. El proceso persiste hasta alcanzar el equilibrio térmico, es decir, hasta que se igualan las temperaturas. Cuando existe una diferencia de temperatura entre dos objetos o regiones lo suficientemente próximas, la transferencia de calor no puede ser detenida, solo puede hacerse más lenta.
Transferencia de calor, en física, proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se transmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación.
Los cuerpos, sometidos a la influencia de una fuente calórica, se calientan, es decir, absorben parte del calor transmitido. También esos cuerpos, en función del material de que están constituidos, no absorben ese calor de la misma forma e intensidad.
El calor absorbido por el cuerpo lo recorre interiormente, desde la cara expuesta a la fuente calórica, hasta la cara opuesta. Es decir desde una zona de mayor temperatura a otra de menor temperatura.

Las leyes de la Termodinámica tratan de la transferencia de energía pero solo se refieren a sistemas que están en equilibrio. Por ello, permiten determinar la cantidad de energía requerida para cambiar un sistema de un estado de equilibrio a otro pero no sirven para predecir la rapidez con que puedan producirse estos cambios. La transferencia de calor complementa la primera y la segunda ley, proporcionando los métodos de análisis que pueden utilizarse para predecir esta velocidad de transmisión.
CAMBIOS DE ESTADO
En física y química se denomina cambio de estado a la evolución de la materia entre varios estados de agregaciónsin que ocurra un cambio en su composición. Los tres estados más estudiados y comunes en la Tierra son el sólido, el líquido y el gaseoso; no obstante, el estado de agregación más común en el Universo es el plasma, material del que están compuestas las estrellas (si se descarta la materia oscura).
Son los procesos en los que un estado de la materia cambia a otro manteniendo una semejanza en su composición. A continuación se describen los diferentes cambios de estado o transformaciones de fase de la materia:
- Fusión: Es el paso de un sólido al estado líquido por medio del calor; durante este proceso endotérmico (proceso que absorbe energía para llevarse a cabo este cambio) hay un punto en que la temperatura permanece constante. El "punto de fusión" es la temperatura a la cual el sólido se funde, por lo que su valor es particular para cada sustancia. Dichas moléculas se moverán en una forma independiente, transformándose en un líquido. Un ejemplo podría ser un hielo derritiéndose, pues pasa de estado sólido al líquido.
- Solidificación: Es el paso de un líquido a sólido por medio del enfriamiento; el proceso es exotérmico. El "punto de solidificación" o de congelación es la temperatura a la cual el líquido se solidifica y permanece constante durante el cambio, y coincide con el punto de fusión si se realiza de forma lenta (reversible); su valor es también específico.
- Vaporización y ebullición: Son los procesos físicos en los que un líquido pasa a estado gaseoso. Si se realiza cuando la temperatura de la totalidad del líquido iguala al punto de ebullición del líquido a esa presión al continuar calentando el líquido, éste absorbe el calor, pero sin aumentar la temperatura: el calor se emplea en la conversión del agua en estado líquido en agua en estado gaseoso, hasta que la totalidad de la masa pasa al estado gaseoso. En ese momento es posible aumentar la temperatura del gas.
- Condensación: Se denomina condensación al cambio de estado de la materia que se pasa de forma gaseosa a forma líquida. Es el proceso inverso a la vaporización. Si se produce un paso de estado gaseoso a estado sólido de manera directa, el proceso es llamado sublimación inversa. Si se produce un paso del estado líquido a sólido se denomina solidificación.
- Sublimación: Es el proceso que consiste en el cambio de estado de la materia sólida al estado gaseoso sin pasar por el estado líquido. Un ejemplo clásico de sustancia capaz de sublimarse es el hielo seco.
- Sublimación inversa: Es el paso directo del estado gaseoso al estado sólido.
- Desionización: Es el cambio de un plasma a gas.
- Ionización: Es el cambio de un gas a un plasma.
Es importante hacer notar que en todas las transformaciones de fase de las sustancias, éstas no se transforman en otras sustancias, solo cambia su estado físico.
Los cambios de estado están divididos generalmente en dos tipos: progresivos y regresivos.
- Cambios progresivos: Vaporización, fusión y sublimación progresiva.
- Cambios regresivos: Condensación, solidificación y sublimación regresiva
EQUILIBRIO TÉRMICO
El equilibrio térmico es aquel estado en el cual se igualan las temperaturas de dos cuerpos, las cuales, en sus condiciones iniciales presentaban diferentes temperaturas, una vez que las temperaturas se equiparan se suspende el flujo de calor, llegando ambos cuerpos al mencionado equilibrio térmico.
Para poder dar una definición más precisa del concepto de equilibrio térmico desde un punto de vista termodinámico es necesario definir algunos conceptos.
Dos sistemas que están en contacto mecánico directo o separados mediante una superficie que permite la transferencia de calor lo que se conoce como superficie diatérmica, se dice que están en contacto térmico.
Consideremos entonces dos sistemas en contacto térmico, dispuestos de tal forma que no puedan mezclarse o reaccionar químicamente. Consideremos además que estos sistemas están colocados en el interior de un recinto donde no es posible que intercambien calor con el exterior ni existan acciones desde el exterior capaces de ejercer trabajo sobre ellos. La experiencia indica que al cabo de un tiempo estos sistemas alcanzan un estado de equilibrio termodinámicoque se denominará estado de equilibrio térmico recíproco o simplemente de equilibrio térmico. A partir de ese momento cesaran los cambios que pueden detectarse macroscópicamente y no obstante que la actividad continúa, de algún modo el estado macroscópico ha llegado al equilibrio y se caracteriza porque ambos sistemas tienen la misma temperatura.
Interpretación microscópica del equilibrio térmico[editar]
La termodinámica proporciona una descripción macroscópica de los sistemas que estudia, sin hacer hipótesis acerca de la estructura microscópica de los mismos. Sin embargo, existen otras disciplinas, como la física estadística, que estudian los mismos fenómenos de la Termodinámica, pero desde un enfoque microscópico.
En particular, el concepto de equilibrio térmico está ligado al concepto de temperatura al decir que dos sistemas en equilibrio térmico tienen la misma temperatura. Desde un punto de vista microscópico, la temperatura está asociada a la energía cinética promedio que tienen las partículas que constituyen el sistema, a saber, átomos, moléculas y/o la estructura electrónica de la sustancia que constituye el sistema. Macroscópicamente, esta energía cinética promedio de las partículas de un sistema es lo que en la Termodinámica se llama energía interna, que es una energía que depende casi exclusivamente de la temperatura del sistema. A mayor energía cinética promedio de las partículas que constituyen un sistema, mayor energía interna y, en general, mayor temperatura del sistema.
La situación de dos sistemas en contacto térmico se interpreta microscópicamente como que las partículas de la superficie de interfase de ambos sistemas son capaces de interactuar entre sí. Básicamente se puede ver que, microscópicamente, las partículas del sistema de mayor temperatura (que tienen mayor energía cinética) van a transferir parte de su energía a las partículas del otro sistema. Se encuentra que esta interacción entre los dos sistemas da lugar a que las partículas de los dos sistemas alcancen la misma energía cinética promedio y, por lo tanto, la misma temperatura. Es decir, desde un punto de vista microscópico, se entiende como equilibrio térmico entre dos sistemas que las partículas de los dos sistemas tengan la misma energía cinética promedio.
Desde un punto de vista macroscópico, se dice que los sistemas han alcanzado un estado de equilibrio, cuando bajo las condiciones indicadas en la sección definición termodinámica del equilibrio térmico, se igualan sus temperaturas. En cambio, desde un punto de vista microscópico, el estado de equilibrio se refiere al promedio, ya que los dos sistemas continúan intercambiando energía incluso una vez alcanzado el equilibrio térmico. La energía cinética individual de una partícula no es estacionaria y son, por tanto, diferentes las energías de cada partícula en cada momento. Es el promedio de la distribución de energías de todas las partículas del sistema lo que no cambia en el tiempo.
De igual manera que para el caso macroscópico, se puede extender el concepto de equilibrio térmico para un sistema único, en el que en esa situación de equilibrio, las partículas de dos partes cualesquiera del sistema tienen la misma energía cinética promedio.

Energía interna
En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de:
- la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que forman un cuerpo respecto al centro de masas del sistema,
- la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.1
La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.
Si pensamos en constituyentes atómicos o moleculares, será el resultado de la suma de la energía cinética de las moléculas o átomos que constituyen el sistema (de sus energías de traslación, rotación y vibración) y de la energía potencial intermolecular (debida a las fuerzas intermoleculares) e intramolecular de la energía de enlace.
- En un gas ideal monoatómico bastará con considerar la energía cinética de traslación de sus átomos.
- En un gas ideal poliatómico, deberemos considerar además la energía vibracional y rotacional de las mismas.
- En un líquido o sólido deberemos añadir la energía potencial que representa las interacciones moleculares.
Desde el punto de vista de la termodinámica, en un sistema cerrado (o sea, de paredes impermeables), la variación total de energía interna es igual a la suma de las cantidades de energía comunicadas al sistema en forma de calor y de trabajo (en termodinámica se considera el trabajo negativo cuando este entra en el sistema termodinámico, positivo cuando sale). Aunque el calor transmitido depende del proceso en cuestión, la variación de energía interna es independiente del proceso, sólo depende del estado inicial y final, por lo que se dice que es una función de estado. Del mismo modo es una diferencial exacta, a diferencia de , que depende del proceso.

MAQUINAS TÉRMICAS
Una máquina térmica es un conjunto de elementos mecánicos que permite intercambiar energía, generalmente a través de un eje, mediante la variación de energía de un fluido que varía su densidad significativamente al atravesar la máquina. Se trata de una máquina de fluido en la que varía el volumen específico del fluido en tal magnitud que los efectos mecánicos y los efectos térmicos son interdependientes.
Por el contrario, en una máquina hidráulica, que es otro tipo de máquina de fluido, la variación de densidad es suficientemente pequeña como para poder desacoplar el análisis de los efectos mecánicos y el análisis de los efectos térmicos, llegando a despreciar los efectos térmicos en gran parte de los casos. Tal es el caso de una bomba hidráulica, a través de la cual pasa líquido. Alejándose de lo que indica la etimología de la palabra «hidráulica», también puede considerarse como máquina hidráulica un ventilador, pues, aunque el aire es un fluido compresible, la variación de volumen específico no es muy significativa con el propósito de que no se desprenda la capa límite.
En una máquina térmica, la compresibilidad del fluido no es despreciable y es necesario considerar su influencia en la transformación de energía.

Una máquina térmica es un dispositivo que realiza un trabajo mediante un proceso de paso de energía desde un foco claiente hasta un foco frio.
Las máquinas térmicas o motores térmicos aprovechan una fuente de energía para realizar un trabajo mecánico. La energía transferida como calor a la máquina no puede a su vez ser transferida integramente por esta como trabajo: una parte de la energía debe ser transferida como calor.
por ello las máquinas térmicas constan de dos partes:
- Un foco caliente, que cede enregía a la máquina mediante calor.
- Un foco frío, que recibe energía de le máquina también mediante calor.
En un principio se podría definir a una máquina térmica como un dispositivo, equipo o una instalación destinada a la producción de trabajo en virtud de un aporte calórico. Aunque en algunas definiciones se identifican como sinónimos los términos «máquina térmica motora» y «motor térmico», en otras se diferencian ambos conceptos. Al diferenciarlos, se considera que un motor térmico es un conjunto de elementos mecánicos que permite obtener energía mecánica a partir de la energía térmica obtenida mediante una reacción de combustión o una reacción nuclear. Un motor térmico dispone de lo necesario para obtener energía térmica, mientras que una máquina térmica motora necesita energía térmica para funcionar, mediante un fluido que dispone de más energía a la entrada que a la salida.1
No hay comentarios.:
Publicar un comentario